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Convergence-accelerating methods have been applied to series expansions for the stable-law density 

Q,(z)=~foe-"=cos(zu)du 
which is, in turn, simply related to the spectral density of the Kohlrausch-Williams/Watts (KWW) decay 
function q~(t)--e-lt/~)=]. N.m.r. relaxation parameters such as NOEF, T1 and Tip are computed for 
polycarbonate and polydimethylsiloxane using the new series and the results compared to experiment and 
to earlier computations which employed a decomposition of the KWW function into a sum of exponential 
terms. 
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INTRODUCTION 

The non-exponential character of molecular relaxation 
in glasses and polymers is well known, and several 
empirical model functions have been suggested to 
describe quantitatively the observed frequency and time 
dispersion. Some of the best known and most widely used 
examples, such as the C01e-Cole 1 (CC), Cole-Davidson 2 
(CD) and combined Havriliak-Negami 3 (HN) functions, 
are closed-form expressions in the frequency domain 
which are convenient and popular for fitting and 
modelling experimental (frequency) data. Theories of 
molecular motion, on the other hand, highlight the central 
role of time correlation functions of molecular positions 
and orientations. In the case of dielectric and n.m.r. 
relaxation in isotropic systems, the time evolutions of 
specific molecular vectors are required, and some 
experiments are directly related to the autocorrelation 
function 

~b 20(t ) - <P2(O)P2(t)) (1) 

where P2(t)=½{1-3 cos2[0(t)]} is the second Legendre 
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polynomial, O(t) is the polar angle of the molecular 
vector at time t, and the angular brackets denote an 
equilibrium ensemble average taken at time t=0.  The 
time dependences of other spherical harmonics are also 
usually needed, but subscripts on the correlation 
functions are ignored in the following discussion with 
attention centred on the time/frequency behaviour only. 
In Debye's original theory, ~b(t) is found to be the simple 
exponential 4~(t)=e -t/~. 

N.m.r. relaxation parameters are directly related to the 
Fourier transform of 4~(t). The spectral density j(~) 
corresponding to the molecular motion is defined ~ as the 
Fourier transform 

;oo j(co) - ~b(t)e -i,~t dt (2) 

with the understanding that ~b(t) is real and symmetric 
in time. The CC, CD and HN functions are, of course, 
models of j(co) and not q~(t). But as Shore and 
Zwanzig 5 point out, when one attempts to find the time 
correlation function ~b(t) corresponding, for example, to 
the Cole-Cole function 

Jcc(CO) -~ (3) 
1 + (ic0z) 1 - ~ 



it is found that q~(t) diverges at t=0 .  Thus, while these 
empiricalj(co) models are useful for fitting data, they have 
unphysical properties, which in turn suggests the difficulty 
in finding a satisfactory model for the underlying physical 
phenomenon. 

Hoffman 6 developed the site model of relaxation with 
Pfeiffer to explain non-exponential dielectric response 
in crystalline solids in terms of a simple physical 
picture of the local crystal-field hindrance to internal 
rotations. The present article is concerned with the 
Kohlrausch-Williams/Watts 7 (KWW)model of relaxation 
in amorphous liquids and glasses 

4)Kww(t)=e-~t/~)~ 0<c~< 1 (4) 

which Shlesinger and Montroll s derived from a model 
based on hindered defect diffusion. As is the case with 
the CC, CD and HN models, the early time behaviour 
of the K W W  is unphysical in that a jump occurs at t = 0. 
However, this aspect of the KWW is related to the neglect 
of inertia, and therefore corresponds to an obvious 
physical simplification which is easily removed 5. This 
difficulty at early times is, of course, also shared by 
Debye's original result, a point recently discussed by 
Powles 9. 

This paper reports a new method for the computation 
of the real and imaginary parts of the spectral density 
j(co) defined by equation (2). N.m.r. applications use only 
the real part of j(co), which is defined in the customary 
notation 4 by 

J(co) = Re[j(co)] = ~b(t) cos(cot) dt (5) 

When ~b(t) is the KWW function of equation (4), our 
earlier studies combined parameters and introduced a 
standard notation1 o,1 

,fo ° Q~(z) = ~ e -  "" cos(zu) du (6) 

where z = (oz. 

SERIES EXPANSIONS FOR Q~(z) 

A converging series for Q,(z) for values of c~ in the range 
0<c~<l  is found by expanding the exponential in 
equation (6) and integrating term by term 

Q,(z)= 1 ~ ( - 1 )  " + l F ( l + n e )  i . . . .  
rc, = 1 ~ s ntlrn~/z) (7) 

If instead of expanding the exponential in equation (6) 
we expand the cosine we are led to a series which is 
formally divergent for values of ~ in (0, 1), but is 
nevertheless useful because it is an asymptotic series ~2 in 
that range. This series has the form 

7zc~, = 1 (2n - 2)! 

which is useful for calculating values of Q,(z) for 
small z. 

We have found earlier ~ that equations (7) and (8) are 
inadequate for convenient computation of Q,(z) at a 
number of intermediate z values (e.g. for ~=0.4, from 
z=0.002 to 0.004; for ~=0.6, from z=0.05 to 0.1). This 
difficulty can be overcome by numerically integrating a 
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transformed form of the original expression in equation 
(6) to complement the remaining values of Q,(z) obtained 
from the series in equations (7) and (8). We now find that 
a modified Euler transformation of the convergent series 
of equation (7) gives very satisfactory results for these 
values of z. A detailed specification of the transformed 
series requires that we define the difference operator A, 
which is the discrete analogue of a derivative. For  
example, if f (n) is a function defined on the set of integers 
then the shift operator is defined by 

A/(n) =f(n + 1) - f (n)  (9) 

Higher powers of A are defined in an obvious way, e.g. 

A2f(n) = A[A/(n)] =f(n + 2 ) -  2f(n + 1) +f(n) (10) 

and so forth. 
In what follows we define the function f(n) and an 

angle 0 by 

F( l+n~)  0 = t a n _ i F  - sin(rcc~/2)~ (11) 
f(n) = F(1 + n~' L z~ + cos(~zc~/2)_] 

These functions allow us to write an alternative series for 
Q~(z) as 

1 ~,~ sin[tin--(n+ 1)Ol 
Q~(z) ( -  1 ). A"f(0) 

7rz 1 -~ ,  -("o (1 + 2z ~ cos ti + z2") ("+ 1)/2 

(12) 

A derivation of this equation can be found in the 
Appendix. In the next section we apply equations (7), (8) 
and (10) to the computation of n.m.r, parameters for two 
polymers. 

NUMERICAL RESULTS AND N.M.R. 
APPLICATIONS 

A Fortran program was written to use the equations 
given above to compute Q~(z). As a general check of the 
program the results shown in Figure I compare the earlier 
tabulated values 11 of zQ,(z) with some results produced 
by the new program for c~ =0.1 and 0.5 over a wide range 
of z. Agreement to four decimal places is found between 
the values calculated by our program and those calculated 
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Figure 1 Comparisons between accurate values (*) of zQ,(z), as 
tabulated to six-place accuracy in ref. 11, and (solid line) those calculated 
from the present algorithm for (a) c~=0.1 and (b) c~=0.5 
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Figure 2 A comparison of experimentally obtained values of Tip for 
polycarbonate (*), plotted as a function of temperature, against values 
obtained from equation (13) using the KWW function (solid line). The 
values obtained from the analysis in ref. 13 are indistinguishable from 
those obtained from the present formalism 
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Figure 3 A comparison of experimental (*) versus theoretical curves 
of Tip as a function of temperature for polydimethylsiloxane, where 
measurements were made at 90 MHz. The theoretical curves were 
calculated by both the algorithms in the present paper (solid line) and 
by the algorithm of Liu et al. 13 (dashed line). There is an obvious 
difference between the two curves at the higher temperatures 

to six-place accuracy in ref. 11. Further checks were 
made for a large number of values of z and e in the 
physically interesting range 0.1 < c~ ~< 1. Our program also 
allows for the calculation for values ofz larger and smaller 
than found in the tables in ref. 11. Equations (7) and (8) 
may be used to generate Q,(z) for very small values of z 
(down to 1 x 10 -2°) and for small values ofc~ (of the order 
of 0.1), but quadruple precision is required in the program. 

Figure 2 shows an application of our program in a 
computation of the proton Tip of polycarbonate. The 
equation for T~o is aa 

T1; ~ = 272S[1.5J(2e)e) + 2.5J(COH) ] (13) 

where 7 is the gyromagnetic ratio, S is the intermolecular 
second moment,  o)e = 7Hrf ,  (.O H is the Larmor  frequency 
and J(co) is the spectral density which is modelled 
by the K W W  function with c~=0.14 as indicated in 

equations (5) and (6). The computed value of Tap agrees 
almost exactly with that reported in ref. 13 which is 
based on an approximate representation of ~b(t) as a 
sum of exponential terms. An example in which 
the two algorithms yield slightly different results is 
shown in Figure 3, which compares values of T~p for 
polydimethylsiloxane measured at 90 MHz  against values 
predicted by a K W W  formula. The value of Tap calculated 
from the algorithm of Liu et al. a3 is shown as a dashed 
line, while the results of the present algorithm are 
presented as a solid line. 

Copies of the programs are available from the authors 
at General Electric. They can be contacted by e-mail at 
bendler@crd.ge.com. 
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A P P E N D I X  

Derivation o f  the generalized Euler transformation 

Quite often the results of a physical calculation are 
expressed in terms of an infinite series. However, having 
in hand a formal series and being able to derive usable 
numerical results from it are not always synonymous. A 
common example of this difficulty occurs in the 
evaluation of many types of lattice sums that arise in 
solid-state physics, but other examples abound in the 
physical sciences 14. To overcome the practical problems 
posed by slowly converging series one often has recourse 
to so-called convergence-accelerat ing techniques. A 
review of many of these methods is to be found in a 
recent monograph by Brezinski and Zaglia 15. 

One of the earliest and most easily implementable of 
these techniques is known as the Euler transformation a 2, ~ 5. 
This transforms a series in which successive terms 
alternate in sign into a second series of this type which 
often has a dramatically improved convergence rate. 
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Specifically, let {a,} be a sequence of positive terms, and 
let S be the sum 

S= ~ (--1)"a, (A1) 
n = 0  

this into the The Euler 
equivalent 

transformation converts 

s=~ (-1)" . = o ~ A"ao (A2) 

where the difference operator has been defined in the 
text. A dramatic illustration of the effectiveness of the 
Euler transformation is provided by the case in which 
a . = ( 1 - 1 0 - 6 )  ", for which S=0.50000025. A direct sum 
of the first 10 6 terms in equation (A1) gives a value equal 
to 0.68394006, which in most cases is a completely 
unsatisfactory approximation to the true value. On the 
other hand, just two terms of the transformed series suffice 
to reproduce the value of S to the number of digits 
shown. A parenthetical but relevant remark is that the 
transformed series in equation (A2) is not necessarily 
more quickly convergent than that in equation (A1), as 
evidenced by the series defined by a,=(0.1)" for which 
equation (A1) yields far quicker convergence than does 
the transformed equation (A2). 

When e ~  1 equation (7) gives a convergent, but not 
necessarily useful, Fourier series representation for Q,(z). 
Calculating the sum of this series can be problematic, 
either because of slow convergence or because of the 
erratic behaviour of the partial sums. To overcome this 
difficulty we derive a transformation for a Fourier series, 
analogous to the Euler transformation in equation (7), 
which can often accelerate the convergence of such series. 
This type of transformation can be applied in many 
other fields, exemplified by the Dubner-Abate method 
for numerical inversion of Laplace transforms 16. Our 
starting point in the derivation is the general definition 

S(x, fi)= ~, (-- 1)na,xne in/~ (A3) 
n = 0  

in which x is real. Equation (7) for Q,(z) can be identified 
with this form of the series by writing 

- I m [ S (  1 z~']q (A4) 
L \z 2 j j  
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where the a, are 

1 F(1 +n~) (a5) 
a, - rcz F(1 + n) 

and 'Im' means 'the imaginary part of'. 
To derive the generalized transformation we first define 

a shift operator E which converts a function b(n) into 
b(n + 1). That is to say, E is defined by the property 

Eb(n) = b(n + 1) (a6) 

The definition in equation (9) indicates that that difference 
operator A is formally related to E by 

A = E -  1 (a7) 

or E = A + 1. Equation (A3) can be rewritten in terms of 
the operator E as 

S(x, fl) ~ (-- 1)"x"ei"/~E"ao - 
1 

= - -  a o (A8) 
, = o 1 + xEe i~ 

where we have used the fact that the series can be thought 
of as being geometric. The last term in equation (A8) can 
be re-expanded to yield an equivalent expression in terms 
of A. This allows us to write for S(x, fl) 

l ~ xne  i~" 
S(x, /~)= 

1 + xdP(1 +A) a° = ,=o2. (-- 1)" (1 + xei~) "+1 
A"a o 

(A9) 

Notice that the original Euler transformation can be 
recovered from this formula by setting fl = 0 and x = 1. 
If x and the a, are real, equation (A9) can be decomposed 
into real and imaginary parts as 

C-- X n 

S(x, B) 2_, ( -  1)" (1 + 2x cos fl + xgff + 1)/2 n = O  

x {cos[nil--(n + 1)01 + i  s in[ni l -  (n + 1)0]}A"a o 

(AIO) 

in which 

xsinf l  fi) (All) 
0 = tan-  1 1 + x cos 

Equations (A10) and (All) together with equation (A4) 
imply our result given in equation (12) in the text. 
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